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Verifiable Computation

Sometimes we need to delegate computation to remote agents whom we do

not fully trust:

Database is searched or updated on a remote server;
Secure hardware signs the input.
Privacy-preserving Al training;

Blind auctions, blockchain, etc..

We might need to pay the agents for the work if it is done correctly.



Summar

Alice needs program C to be computed on input X;
Bob takes the task (C,X);

Bob returns answer A and proof of correctness P;
Alice verifies P spending much less time than Bob.

Alice rewards Bob.

How to do that so that Bob can not cheat?



Summar

Alice needs program C to be computed on input X;
Bob takes the task (C,X);

Bob returns answer A and proof of correctness P;
Alice verifies P spending much less time than Bob.

Alice rewards Bob.

How to do that so that Bob can not cheat?

A mistake in just one step can ruin the entire computation.



zk-STARK



Simple Example

Program:
Take input X, = X;

Compute X; « (X7, +3)uptoi = 100.
Return A = X4gp.

No big number arithmetic, only lowest 10 digits (modulo 10%9).



Simple Example

Program:
Take input X, = X;

Compute X; « (X7, +3)uptoi = 100.
Return A = X4gp.

No big number arithmetic, only lowest 10 digits (modulo 10%9).

Alice says X = 1.

Bob returns A = 5251434499 and some proof P (just a few bytes).
How can that be?



Program:
Take input X, = X;
Compute X; « (X7, +3)uptoi = 100.
Return A = X4gp.

No big number arithmetic, only lowest 10 digits (modulo 10%9).

Very simple protocol:
Bob computes some function f on 10000 inputs, from 1 to 10000.
Bob computes another function g on the same 10000 inputs.
Alice selects random 0 < s < 10000.
Bob returns f(s),f(s +1),g(s).

Alice verifies just one equation and any cheat is detected with probability 99%.
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Program:
Take input X, = X;
Compute X; « (X7, +3)uptoi = 100.
Return A = X4gp.

No big number arithmetic, only lowest 10 digits (modulo 10%9).

Very simple protocol:
Bob computes some function f on 10000 inputs, from 1 to 10000.
Bob computes another function g on the same 10000 inputs.
_ How exactly?
Alice selects random 0 < s < 10000.
Bob returns f(s),f(s +1),g(s).

Alice verifies just one equation and any cheat is detected with probability 99%.
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Let Bob’s program be a table of 101 entries

Code  Value ! = Compute polynomial f of degree 100 that
Xy 1 f(0) interpolates on the memory

X1 4 f(1)

X, 19 f(2)

Xz 364 £(3)

Xi00 5251434499 £(100)
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Let Bob’s program be a table of 101 entries

Code Value f = Compute polynomial f of degree 100 that
Xo 1 f(0) interpolates on the memory

X1 4 f(1) = Define constraint

X, 19 f(2) C(x,y) =y — x* — 3.

X3 364 f(3) = Bob executed the program if

C(f(x),f(x+1)) =0 forall x

X100 5251434499 f{100) = Note that C(f(x), f(x + 1)) has degree 200, and
D(x) = x(x — 1D)(x — 2) - (x — 99) dividesi it.

= Define

gx)=C{Fx)f(x + 1))/D(x)
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C(x,y) =y — x* — 3.

Code Value f

X, 1 #(0) D(x)=x(x — D(x — 2)- (x — 99)
X1 4 1) gx)=C{x) f(x + 1))/D (x)
X7 13 f(2)

X3 364 f(3)

Xi00 5251434499  f(100)

? f(10000)
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C(x,y) =y — x* — 3.

Code Value f

X, 1 #(0) D(x)=x(x — D(x — 2)- (x — 99)
X1 4 1) gx)=C{x) f(x + 1))/D(x)
X7 139 f(2)

X, 364 f3) Bob goes on

- = Compute fand g up to 10000
X100 5251434499  f£(100)

? f(10000)
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Clx,y) =y — x? — 3.

Code Value f D(x)=x(x — Dx — 2)- (x — 99)
Xo 1 f0) g(x)=C(f(x),f(x + 1))/D (x)
X1 4 f(1)

X, 19 f2) Bob goes on

X4 364 £(3)

= Compute fand g up to 10000

= Commit to the evaluations:

Hy = H(f(0),f(1),..,£(10000));
H, = H(g(0),g(1),...,9(10000));

? f(10000) = Send H,, H, to Alice with proofs that f, g of degree
100.

=  Alice sends random s between 0 and 10000 to Bob.
= Bobsends back f(s),f(s +1),9(s).

Xi00 5251434499  f(100)
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Recall

C(x,y) =y — x* — 3.
D(x)=x(x — D(x — 2)- (x — 99)
gx)=C(f(x) f(x +1)/D(x)

Alice verifies

C(f(s)f(s + 1)/D(s) = g(s).

It works if Bob is honest by definition.

17



What if Bob cheats and does not know the true f?

Code value / = He cannot compute proper g = C(f, f)/D of

Xo 1 f0)

X, 4 1) degree 100

X, 20 (2)zf2) * C(f,f)/D will differ from g on at least 1 point

X3 365 f(3) = As polynomials they can agree on at most 100 points

(they have degree 100) out of 10000.

5251434499 £(100) * Thus fo.r.random s Alice detects the cheat with
probability 99%

? £(10000)
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What if Bob cheats and does not know the true f?

Code value / = He cannot compute proper g = C(f, f)/D of

Xo 1 f0)

X, 4 1) degree 100

X, 20 (2)zf2) * C(f,f)/D will differ from g on at least 1 point

X3 365 f(3) = As polynomials they can agree on at most 100 points

(they have degree 100) out of 10000.

5251434499 £(100) * Thus fo.r.random s Alice detects the cheat with
probability 99%

? £(10000)
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Extensions

Zero knowledge: Bob can convince Alice revealing only X; ,i > 100.

Complex programs

20



Arbitrary Programs

Let C be a code of T steps. | can prove that

| executed the code on (secret) input K and got result X.

Let Cp be the code of my CPU (handling registers, function calls, memory, etc.).
Prepare T CPU-state variables, S = (5{,5,,...,57).
Using T copies of C_P, prove correct transitions.

Let W = (W, W,, ..., W;) be the list of states S sorted by the memory address they
access.

» Prove that successive memory accesses yield the same data.

» Prove that W is a sort of S using permutation networks/proof of shuffle, etc.
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zk-SNARK
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Pairings
Group G with generator g, for example a set of integers modulo a prime p

Pairing e is a function of two arguments such that
e(9%,9%) = e(g,. 9%

and e(g, g) is also a generator
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Factorization Proof

Suppose you want to prove you know p and g

N =p-q.
Then you provide p’ = gP,q' = g9 and everyone can verify that

e(p’.q) = e(g, "
since

e(p’,q") = e(gP, g7)
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Sophisticated Pro

a{, a, — inputs, a,, — output.

a3 — a1 * az;
a4 — az . ag;
as < a; * (ay + az);

Quite many real programs can be represented this way.
Suppose | have a correct program execution: (a4, a,, as,...). How to prove it is correct?
» Selecting a random equation? Then it will be easy to cheat in the others

> Supply all a® as g% ? Too expensive.

25



Sophisticated Pro

Program with n lines
Az < Qaq * A4y,
Ay, < Ay * d3;
as < a; - (a4 + ay);

Instead, try the following concept:

Trusted party squeezes the entire program into n polynomials {u;, v;, w;} of degree n
which encodes which a; gets into which equation with which coefficient so that {a;}

is the program execution only if

Eaiui(x) ' zaivi(X) = Zaiwi(x) +d(X)

l l l

J \ J
YA YB YC o




Sophisticated Pro

Trusted party squeezes the entire program into n polynomials {u;, v;, w;} of degree n
which encodes which a; gets into which equation with which coefficient so that {a;} is
the program execution only if

zaiui(x) ' zaivi(x) — Eaiwi(x) +d(X)

l l l
Q J Q J )

YA B c
Then compute the polynomial on a secret input s and stores (exponentiated) all g”i(s)
and g%®) . This is called a proving key P.

Prover runs the program on his own input and computes the internal variables a;.
They should satisfy program equations. Then Prover computes g4, g%, g¢ as a short
proof 1.

Verifier checks the proof in constant time by computing a few pairings to verify the
equation above.
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Form Sin

Forx = 0, x # 1,2 aAz; = aq *a,
Forx = 1,x # 0,2 Ay, = 04y * A3
Forx = 2,x # 0,1 as = aq - (ay, + ay)

Proper multiplication:

az(x — D(x—2)/2=((x—-Dx-2)/2)a; - ((x — D(x—2)/2)a,
—ayx(x —2)/2 = (x(x — 2)/2)a, - (x(x — 2)/2)a;

x(x—1as =x(x—1)a; - (x(x —1Day + x(x — 1)a,)

Altogether
a,a,(x* —=3x+2)+a,a;(x* —2x)+ ..=0
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nomial Relation for the Entire Scheme

(a4, a,, ..., a,) are scheme execution if and only if the following polynomials are equal

zaiui(x) ' zaivi(X) = zaiwi(x) + h(X)t(X)

l l l

Testing for correctness reduces to testing of polynomial equivalence

How to test the latter?
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nomial Relation for the Entire Scheme

(a4, a,, ..., a,) are scheme execution if and only if the following polynomials are equal

zaiui(x) ' zaivi(X) = zaiwi(x) + h(X)t(X)

l l l

Testing for correctness reduces to testing of polynomial equivalence

In the proving key a random point s is taken, and g”i(s), g”i(s), gWi(S)are computed and
published with z' = g"(s)t(s)
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nomial Relation for the Entire Scheme

(a4, a,, ..., a,) are scheme execution if and only if the following polynomials are equal

zaiui(x) ' zaivi(X) = zaiwi(x) + h(X)t(X)

l l l

Testing for correctness reduces to testing of polynomial equivalence

In the proving key a random point s is taken, and g“i(s), gVi(8), gWi(S)gre computed and
published with z' = g"(s)t(s)

The prover can then compute g%i%i(5) by taking g%i(*) to the power of a;. He can
compute x = g&i 4% glsoy = g&i 4VilS) and z = gZi WWilS),
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nomial Relation for the Entire Scheme

(a4, a,, ..., a,) are scheme execution if and only if the following polynomials are equal

zaiui(x) ' zaivi(X) = zaiwi(x) + h(X)t(X)

l l l

Testing for correctness reduces to testing of polynomial equivalence

In the proving key a random point s is taken, and g*i(s), gVi($), g¥i(S)are computed and
published with z/ = gh)t()
The prover can then compute g%i%i(5) by taking g%i(*) to the power of a;. He can

compute x = g&i 4% glsoy = g&i 4VilS) and z = gZi WWilS),

Now verifier can checkife(x,y) = z -7
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nomial Relation for the Entire Scheme

(a4, a,, ..., a,) are scheme execution if and only if the following polynomials are equal

zaiui(x) ' zaivi(X) = zaiwi(x) + h(X)t(X)

l l l

Testing for correctness reduces to testing of polynomial equivalence

In the proving key a random point s is taken, and g“i(s), gVi(8), gWi(S)gre computed and
published with z' = g"(s)t(s)

The prover can then compute g%i%i(5) by taking g%i(*) to the power of a;. He can
compute x = g&i 4% glsoy = g&i 4VilS) and z = gZi WWilS),

Wait, what if he cheats and just

Now verifier can check ife(x,y) = z -z computes z to be as needed?
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Missing Details
To prove that (Z aiui(X)> - (Z aivi(X)> = (Z aiwi(X)> + hOOEX)

l

l

l

Proving key also contains for random «, 3,7y, 6

Bui(s)+avi(s)+w;(s) h(s)t(s)
ga;gﬁ;gy;HS;g o ,Z’ =g 5
Prover computes
i(s)+avi(s)+w;
A= g“+(2iaiui(5)),3 — gﬁ+(ziaivi(5)), C = gziaiﬁu (s) Cﬁg(S) wi(s)

Verifier checks if
e(4,B) = e(g“,gﬁ) : e(Cz’,g5)

Only 2 uncacheable pairing computations! Any incorrect a; will make C inconsistent
with 4, B, and the inconsistency is impossible to correct if you do not know a, 5, 0, s

34



More Missing Details

Some more complexity:

* Prover randomizes his outputs so extra variables 7, x are introduced and another
pairing operation is performed by Verifier.

e Pairing is of type-lll, so three different G groups and three generators.

* |Input variables are treated differently, and another pairing is needed.

. gsj for all j are published instead of g%i($), g¥i(S) in order to make proving key
smaller. This makes Prover to do extra work to recompute the polynomial values
using FFT.
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