W VIRGINIA
TECH.

CS 5594: BLOCKCHAIN
TECHNOLOGIES _

THANG HOANG, PhD

(ZERO-KNOWLEDGE) VERIFIABLE COMPUTATION

Most slides derived from the one by Dmitry Khovratovich

Overview

Motivation
zk-STARK
zk-SNARK

MOTIVATION

Verifiable Computation

Sometimes we need to delegate computation to remote agents whom we do

not fully trust:

Database is searched or updated on a remote server;
Secure hardware signs the input.
Privacy-preserving Al training;

Blind auctions, blockchain, etc..

We might need to pay the agents for the work if it is done correctly.

Summar

Alice needs program C to be computed on input X;
Bob takes the task (C,X);

Bob returns answer A and proof of correctness P;
Alice verifies P spending much less time than Bob.

Alice rewards Bob.

How to do that so that Bob can not cheat?

Summar

Alice needs program C to be computed on input X;
Bob takes the task (C,X);

Bob returns answer A and proof of correctness P;
Alice verifies P spending much less time than Bob.

Alice rewards Bob.

How to do that so that Bob can not cheat?

A mistake in just one step can ruin the entire computation.

zk-STARK

Simple Example

Program:
Take input X, = X;

Compute X; « (X7, +3)uptoi = 100.
Return A = X4gp.

No big number arithmetic, only lowest 10 digits (modulo 10%9).

Simple Example

Program:
Take input X, = X;

Compute X; « (X7, +3)uptoi = 100.
Return A = X4gp.

No big number arithmetic, only lowest 10 digits (modulo 10%9).

Alice says X = 1.

Bob returns A = 5251434499 and some proof P (just a few bytes).
How can that be?

Program:
Take input X, = X;
Compute X; « (X7, +3)uptoi = 100.
Return A = X4gp.

No big number arithmetic, only lowest 10 digits (modulo 10%9).

Very simple protocol:
Bob computes some function f on 10000 inputs, from 1 to 10000.
Bob computes another function g on the same 10000 inputs.
Alice selects random 0 < s < 10000.
Bob returns f(s),f(s +1),g(s).

Alice verifies just one equation and any cheat is detected with probability 99%.

10

Program:
Take input X, = X;
Compute X; « (X7, +3)uptoi = 100.
Return A = X4gp.

No big number arithmetic, only lowest 10 digits (modulo 10%9).

Very simple protocol:
Bob computes some function f on 10000 inputs, from 1 to 10000.
Bob computes another function g on the same 10000 inputs.
_ How exactly?
Alice selects random 0 < s < 10000.
Bob returns f(s),f(s +1),g(s).

Alice verifies just one equation and any cheat is detected with probability 99%.

11

Let Bob’s program be a table of 101 entries

Code Value ! = Compute polynomial f of degree 100 that
Xy 1 f(0) interpolates on the memory

X1 4 f(1)

X, 19 f(2)

Xz 364 £(3)

Xi00 5251434499 £(100)

12

Let Bob’s program be a table of 101 entries

Code Value f = Compute polynomial f of degree 100 that
Xo 1 f(0) interpolates on the memory

X1 4 f(1) = Define constraint

X, 19 f(2) C(x,y) =y — x* — 3.

X3 364 f(3) = Bob executed the program if

C(f(x),f(x+1)) =0 forall x

X100 5251434499 f{100) = Note that C(f(x), f(x + 1)) has degree 200, and
D(x) = x(x — 1D)(x — 2) - (x — 99) dividesi it.

= Define

gx)=C{Fx)f(x + 1))/D(x)

13

C(x,y) =y — x* — 3.

Code Value f

X, 1 #(0) D(x)=x(x — D(x — 2)- (x — 99)
X1 4 1) gx)=C{x) f(x + 1))/D (x)
X7 13 f(2)

X3 364 f(3)

Xi00 5251434499 f(100)

? f(10000)

14

C(x,y) =y — x* — 3.

Code Value f

X, 1 #(0) D(x)=x(x — D(x — 2)- (x — 99)
X1 4 1) gx)=C{x) f(x + 1))/D(x)
X7 139 f(2)

X, 364 f3) Bob goes on

- = Compute fand g up to 10000
X100 5251434499 f£(100)

? f(10000)

15

Clx,y) =y — x? — 3.

Code Value f D(x)=x(x — Dx — 2)- (x — 99)
Xo 1 f0) g(x)=C(f(x),f(x + 1))/D (x)
X1 4 f(1)

X, 19 f2) Bob goes on

X4 364 £(3)

= Compute fand g up to 10000

= Commit to the evaluations:

Hy = H(f(0),f(1),..,£(10000));
H, = H(g(0),g(1),...,9(10000));

? f(10000) = Send H,, H, to Alice with proofs that f, g of degree
100.

= Alice sends random s between 0 and 10000 to Bob.
= Bobsends back f(s),f(s +1),9(s).

Xi00 5251434499 f(100)

16

Recall

C(x,y) =y — x* — 3.
D(x)=x(x — D(x — 2)- (x — 99)
gx)=C(f(x) f(x +1)/D(x)

Alice verifies

C(f(s)f(s + 1)/D(s) = g(s).

It works if Bob is honest by definition.

17

What if Bob cheats and does not know the true f?

Code value / = He cannot compute proper g = C(f, f)/D of

Xo 1 f0)

X, 4 1) degree 100

X, 20 (2)zf2) * C(f,f)/D will differ from g on at least 1 point

X3 365 f(3) = As polynomials they can agree on at most 100 points

(they have degree 100) out of 10000.

5251434499 £(100) * Thus fo.r.random s Alice detects the cheat with
probability 99%

? £(10000)

18

What if Bob cheats and does not know the true f?

Code value / = He cannot compute proper g = C(f, f)/D of

Xo 1 f0)

X, 4 1) degree 100

X, 20 (2)zf2) * C(f,f)/D will differ from g on at least 1 point

X3 365 f(3) = As polynomials they can agree on at most 100 points

(they have degree 100) out of 10000.

5251434499 £(100) * Thus fo.r.random s Alice detects the cheat with
probability 99%

? £(10000)

19

Extensions

Zero knowledge: Bob can convince Alice revealing only X; ,i > 100.

Complex programs

20

Arbitrary Programs

Let C be a code of T steps. | can prove that

| executed the code on (secret) input K and got result X.

Let Cp be the code of my CPU (handling registers, function calls, memory, etc.).
Prepare T CPU-state variables, S = (5{,5,,...,57).
Using T copies of C_P, prove correct transitions.

Let W = (W, W,, ..., W;) be the list of states S sorted by the memory address they
access.

» Prove that successive memory accesses yield the same data.

» Prove that W is a sort of S using permutation networks/proof of shuffle, etc.

21

zk-SNARK

22

Pairings
Group G with generator g, for example a set of integers modulo a prime p

Pairing e is a function of two arguments such that
e(9%,9%) = e(g,. 9%

and e(g, g) is also a generator

23

Factorization Proof

Suppose you want to prove you know p and g

N =p-q.
Then you provide p’ = gP,q' = g9 and everyone can verify that

e(p’.q) = e(g, "
since

e(p’,q") = e(gP, g7)

24

Sophisticated Pro

a{, a, — inputs, a,, — output.

a3 — a1 * az;
a4 — az . ag;
as < a; * (ay + az);

Quite many real programs can be represented this way.
Suppose | have a correct program execution: (a4, a,, as,...). How to prove it is correct?
» Selecting a random equation? Then it will be easy to cheat in the others

> Supply all a® as g% ? Too expensive.

25

Sophisticated Pro

Program with n lines
Az < Qaq * A4y,
Ay, < Ay * d3;
as < a; - (a4 + ay);

Instead, try the following concept:

Trusted party squeezes the entire program into n polynomials {u;, v;, w;} of degree n
which encodes which a; gets into which equation with which coefficient so that {a;}

is the program execution only if

Eaiui(x) ' zaivi(X) = Zaiwi(x) +d(X)

l l l

J \ J
YA YB YC o

Sophisticated Pro

Trusted party squeezes the entire program into n polynomials {u;, v;, w;} of degree n
which encodes which a; gets into which equation with which coefficient so that {a;} is
the program execution only if

zaiui(x) ' zaivi(x) — Eaiwi(x) +d(X)

l l l
Q J Q J)

YA B c
Then compute the polynomial on a secret input s and stores (exponentiated) all g”i(s)
and g%®) . This is called a proving key P.

Prover runs the program on his own input and computes the internal variables a;.
They should satisfy program equations. Then Prover computes g4, g%, g¢ as a short
proof 1.

Verifier checks the proof in constant time by computing a few pairings to verify the
equation above.

27

Form Sin

Forx = 0, x # 1,2 aAz; = aq *a,
Forx = 1,x # 0,2 Ay, = 04y * A3
Forx = 2,x # 0,1 as = aq - (ay, + ay)

Proper multiplication:

az(x — D(x—2)/2=((x—-Dx-2)/2)a; - ((x — D(x—2)/2)a,
—ayx(x —2)/2 = (x(x — 2)/2)a, - (x(x — 2)/2)a;

x(x—1as =x(x—1)a; - (x(x —1Day + x(x — 1)a,)

Altogether
a,a,(x* —=3x+2)+a,a;(x* —2x)+ ..=0

28

nomial Relation for the Entire Scheme

(a4, a,, ..., a,) are scheme execution if and only if the following polynomials are equal

zaiui(x) ' zaivi(X) = zaiwi(x) + h(X)t(X)

l l l

Testing for correctness reduces to testing of polynomial equivalence

How to test the latter?

29

nomial Relation for the Entire Scheme

(a4, a,, ..., a,) are scheme execution if and only if the following polynomials are equal

zaiui(x) ' zaivi(X) = zaiwi(x) + h(X)t(X)

l l l

Testing for correctness reduces to testing of polynomial equivalence

In the proving key a random point s is taken, and g”i(s), g”i(s), gWi(S)are computed and
published with z' = g"(s)t(s)

30

nomial Relation for the Entire Scheme

(a4, a,, ..., a,) are scheme execution if and only if the following polynomials are equal

zaiui(x) ' zaivi(X) = zaiwi(x) + h(X)t(X)

l l l

Testing for correctness reduces to testing of polynomial equivalence

In the proving key a random point s is taken, and g“i(s), gVi(8), gWi(S)gre computed and
published with z' = g"(s)t(s)

The prover can then compute g%i%i(5) by taking g%i(*) to the power of a;. He can
compute x = g&i 4% glsoy = g&i 4VilS) and z = gZi WWilS),

31

nomial Relation for the Entire Scheme

(a4, a,, ..., a,) are scheme execution if and only if the following polynomials are equal

zaiui(x) ' zaivi(X) = zaiwi(x) + h(X)t(X)

l l l

Testing for correctness reduces to testing of polynomial equivalence

In the proving key a random point s is taken, and g*i(s), gVi($), g¥i(S)are computed and
published with z/ = gh)t()
The prover can then compute g%i%i(5) by taking g%i(*) to the power of a;. He can

compute x = g&i 4% glsoy = g&i 4VilS) and z = gZi WWilS),

Now verifier can checkife(x,y) = z -7

32

nomial Relation for the Entire Scheme

(a4, a,, ..., a,) are scheme execution if and only if the following polynomials are equal

zaiui(x) ' zaivi(X) = zaiwi(x) + h(X)t(X)

l l l

Testing for correctness reduces to testing of polynomial equivalence

In the proving key a random point s is taken, and g“i(s), gVi(8), gWi(S)gre computed and
published with z' = g"(s)t(s)

The prover can then compute g%i%i(5) by taking g%i(*) to the power of a;. He can
compute x = g&i 4% glsoy = g&i 4VilS) and z = gZi WWilS),

Wait, what if he cheats and just

Now verifier can check ife(x,y) = z -z computes z to be as needed?

33

Missing Details
To prove that (Z aiui(X)> - (Z aivi(X)> = (Z aiwi(X)> + hOOEX)

l

l

l

Proving key also contains for random «, 3,7y, 6

Bui(s)+avi(s)+w;(s) h(s)t(s)
ga;gﬁ;gy;HS;g o ,Z’ =g 5
Prover computes
i(s)+avi(s)+w;
A= g“+(2iaiui(5)),3 — gﬁ+(ziaivi(5)), C = gziaiﬁu (s) Cﬁg(S) wi(s)

Verifier checks if
e(4,B) = e(g“,gﬁ) : e(Cz’,g5)

Only 2 uncacheable pairing computations! Any incorrect a; will make C inconsistent
with 4, B, and the inconsistency is impossible to correct if you do not know a, 5, 0, s

34

More Missing Details

Some more complexity:

* Prover randomizes his outputs so extra variables 7, x are introduced and another
pairing operation is performed by Verifier.

e Pairing is of type-lll, so three different G groups and three generators.

* |Input variables are treated differently, and another pairing is needed.

. gsj for all j are published instead of g%i($), g¥i(S) in order to make proving key
smaller. This makes Prover to do extra work to recompute the polynomial values
using FFT.

35

