CS 5594: BLOCKCHAIN TECHNOLOGIES

THANG HOANG, PhD

(ZERO-KNOWLEDGE) VERIFIABLE COMPUTATION

Motivation
zk-STARK
zk-SNARK

MOTIVATION

Sometimes we need to delegate computation to remote agents whom we do not fully trust:

Database is searched or updated on a remote server;
Secure hardware signs the input.
Privacy-preserving Al training;
Blind auctions, blockchain, etc..
We might need to pay the agents for the work if it is done correctly.

Alice needs program C to be computed on input X;
Bob takes the task (C,X);
Bob returns answer A and proof of correctness P ;
Alice verifies P spending much less time than Bob.
Alice rewards Bob.

How to do that so that Bob can not cheat?

Alice needs program C to be computed on input X;
Bob takes the task (C,X);
Bob returns answer A and proof of correctness P ;
Alice verifies P spending much less time than Bob.
Alice rewards Bob.

How to do that so that Bob can not cheat?

A mistake in just one step can ruin the entire computation.
zk-STARK

Program:

Take input $X_{0}=X$;
Compute $X_{i} \leftarrow\left(X_{i-1}^{2}+3\right)$ up to $i=100$.
Return $A=X_{100}$.
No big number arithmetic, only lowest 10 digits (modulo 10^{10}).

Program:

Take input $X_{0}=X$;
Compute $X_{i} \leftarrow\left(X_{i-1}^{2}+3\right)$ up to $i=100$.
Return $A=X_{100}$.
No big number arithmetic, only lowest 10 digits (modulo 10^{10}).

Alice says $\mathrm{X}=1$.
Bob returns $A=5251434499$ and some proof P (just a few bytes). How can that be?

Program:

Take input $X_{0}=X$;
Compute $X_{i} \leftarrow\left(X_{i-1}^{2}+3\right)$ up to $i=100$.
Return $A=X_{100}$.
No big number arithmetic, only lowest 10 digits (modulo 10^{10}).

Very simple protocol:

Bob computes some function f on 10000 inputs, from 1 to 10000.
Bob computes another function g on the same 10000 inputs.
Alice selects random $0<\mathrm{s}<10000$.
Bob returns $f(s), f(s+1), g(s)$.
Alice verifies just one equation and any cheat is detected with probability 99\%.

Program:

Take input $X_{0}=X$;
Compute $X_{i} \leftarrow\left(X_{i-1}^{2}+3\right)$ up to $i=100$.
Return $A=X_{100}$.
No big number arithmetic, only lowest 10 digits (modulo 10^{10}).

Very simple protocol:

Bob computes some function f on 10000 inputs, from 1 to 10000.
Bob computes another function g on the same 10000 inputs.
Alice selects random $0<\mathrm{s}<10000$.
How exactly?
Bob returns $f(s), f(s+1), g(s)$.
Alice verifies just one equation and any cheat is detected with probability 99\%.

Details

Code	Value	f
X_{0}	1	$f(0)$
X_{1}	4	$f(1)$
X_{2}	19	$f(2)$
X_{3}	364	$f(3)$
\ldots		
X_{100}	5251434499	$f(100)$

Let Bob's program be a table of 101 entries

- Compute polynomial f of degree 100 that interpolates on the memory

Details

Code	Value	f
X_{0}	1	$f(0)$
X_{1}	4	$f(1)$
X_{2}	19	$f(2)$
X_{3}	364	$f(3)$
\ldots		
X_{100}	5251434499	$f(100)$

Let Bob's program be a table of 101 entries

- Compute polynomial f of degree 100 that interpolates on the memory
- Define constraint

$$
C(x, y)=y-x^{2}-3 .
$$

- Bob executed the program if

$$
C(f(x), f(x+1))=0 \text { for all } x
$$

- Note that $C(f(x), f(x+1))$ has degree 200, and

$$
D(x)=x(x-1)(x-2) \cdot(x-99) \text { divides it. }
$$

- Define

$$
g(x)=C(f(x), f(x+1)) / D(x)
$$

Code	Value	f	$C(x, y)=y-x^{2}-3$.
X_{0}	1	$f(0)$	$D(x)=x(x-1)(x-2) \cdot(x-99)$
X_{1}	4	$f(1)$	$g(x)=C(f(x), f(x+1)) / D(x)$
X_{2}	19	$f(2)$	
X_{3}	364	$f(3)$	
\ldots			
X_{100}	5251434499	$f(100)$	
\ldots	\ldots	\ldots	
	$?$	$\mathrm{f}(10000)$	

Code	Value	f	$C(x, y)=y-x^{2}-3$.
X_{0}	1	$f(0)$	$D(x)=x(x-1)(x-2) \cdot(x-99)$
X_{1}	4	$f(1)$	$g(x)=C(f(x), f(x+1)) / D(x)$
X_{2}	19	$f(2)$	
X_{3}	364	$f(3)$	Bob goes on
\ldots			- Compute f and g up to 10000
X_{100}	5251434499	$f(100)$	
\ldots	\ldots	\ldots	
	$?$	$f(10000)$	

Details

			$C(x, y)=y-x^{2}-3$.
Code	Value	f	$D(x)=x(x-1)(x-2) \cdot(x-99)$
X_{0}	1	$f(0)$	$g(x)=C(f(x), f(x+1)) / D(x)$
X_{1}	4	$f(1)$	
X_{2}	19	$f(2)$	Bob goes on
X_{3}	364	$f(3)$	- Compute f and g up to 10000
X_{100}	5251434499	$f(100)$	- Commit to the evaluations: $H_{1}=H(f(0), f(1), \ldots, f(10000)) ;$
...	\cdots	$f(10000)$	$H_{2}=H(g(0), g(1), \ldots, g(10000)) ;$ - Send H_{1}, H_{2} to Alice with proofs that f, g of degree 100. - Alice sends random s between 0 and 10000 to Bob. - Bob sends back $f(s), f(s+1), g(s)$.

Recall

$$
\begin{gathered}
C(x, y)=y-x^{2}-3 . \\
D(x)=x(x-1)(x-2) \cdot(x-99) \\
g(x)=C(f(x), f(x+1)) / D(x)
\end{gathered}
$$

Alice verifies

$$
C(f(s), f(s+1)) / D(s)=g(s) .
$$

It works if Bob is honest by definition.

Cheat

What if Bob cheats and does not know the true f ?

Code	Value	f	- He cannot compute proper $g=C(f, f) / D$ of
X_{0}	1	$f(0)$	(${ }^{\text {a }}$
X_{1}	4	$f(1)$	degree 100
X_{2}	20	$f^{\prime}(2) \neq f(2)$	- $C\left(f^{\prime}, f^{\prime}\right) / D$ will differ from g on at least 1 point
X_{3}	365	$f^{\prime}(3)$	- As polynomials they can agree on at most 100 points (they have degree 100) out of 10000.
X_{100}	5251434499	$f(100)$	- Thus for random s Alice detects the cheat with probability 99\%
...	...	\cdots	
	?	$f(10000)$	

Cheat

What if Bob cheats and does not know the true f ?

Code	Value	f	- He cannot compute proper $g=C(f, f) / D$ of
X_{0}	1	$f(0)$	(${ }^{\text {a }}$
X_{1}	4	$f(1)$	degree 100
X_{2}	20	$f^{\prime}(2) \neq f(2)$	- $C\left(f^{\prime}, f^{\prime}\right) / D$ will differ from g on at least 1 point
X_{3}	365	$f^{\prime}(3)$	- As polynomials they can agree on at most 100 points (they have degree 100) out of 10000.
X_{100}	5251434499	$f(100)$	- Thus for random s Alice detects the cheat with probability 99\%
...	...	\cdots	
	?	$f(10000)$	

Zero knowledge: Bob can convince Alice revealing only $X_{i}, i>100$. Complex programs

Let C be a code of T steps. I can prove that
I executed the code on (secret) input K and got result X.

Let C_{P} be the code of my CPU (handling registers, function calls, memory, etc.).
Prepare T CPU-state variables, $\mathbf{S}=\left(S_{1}, S_{2}, \ldots, S_{T}\right)$.
Using T copies of $C_{-} P$, prove correct transitions.
Let $\mathbf{W}=\left(W_{1}, W_{2}, \ldots, W_{T}\right)$ be the list of states S sorted by the memory address they access.

P Prove that successive memory accesses yield the same data.
$>$ Prove that \mathbf{W} is a sort of \mathbf{S} using permutation networks/proof of shuffle, etc.
zk-SNARK

Group G with generator g, for example a set of integers modulo a prime p

Pairing e is a function of two arguments such that

$$
e\left(g^{a}, g^{b}\right)=e(g, g)^{a b}
$$

and $e(g, g)$ is also a generator

Factorization Proof

Suppose you want to prove you know p and q

$$
N=p \cdot q .
$$

Then you provide $p^{\prime}=g^{p}, q^{\prime}=g^{q}$ and everyone can verify that

$$
e\left(p^{\prime}, q^{\prime}\right)=e(g, g)^{N}
$$

since

$$
e\left(p^{\prime}, q^{\prime}\right)=e\left(g^{p}, g^{q}\right)
$$

a_{1}, a_{2}-inputs, a_{n} - output.

$$
\begin{aligned}
& a_{3} \leftarrow a_{1} \cdot a_{2} \\
& a_{4} \leftarrow a_{2} \cdot a_{3} ; \\
& a_{5} \leftarrow a_{1} \cdot\left(a_{4}+a_{2}\right)
\end{aligned}
$$

Quite many real programs can be represented this way.
Suppose I have a correct program execution: $\left(a_{1}, a_{2}, a_{3}, \ldots\right)$. How to prove it is correct?
$>$ Selecting a random equation? Then it will be easy to cheat in the others
$>$ Supply all a^{i} as $g^{a_{i}}$? Too expensive.

Program with n lines

$$
\begin{aligned}
& a_{3} \leftarrow a_{1} \cdot a_{2} \\
& a_{4} \leftarrow a_{2} \cdot a_{3} \\
& a_{5} \leftarrow a_{1} \cdot\left(a_{4}+a_{2}\right)
\end{aligned}
$$

Instead, try the following concept:
Trusted party squeezes the entire program into n polynomials $\left\{u_{i}, v_{i}, w_{i}\right\}$ of degree n which encodes which a_{i} gets into which equation with which coefficient so that $\left\{a_{i}\right\}$ is the program execution only if

$$
\underbrace{\left(\sum_{i} a_{i} u_{i}(X)\right)}_{A} \cdot \underbrace{\left(\sum_{i} a_{i} v_{i}(X)\right)}_{B}=\underbrace{\left(\sum_{i} a_{i} w_{i}(X)\right)}_{C}+d(X)
$$

Trusted party squeezes the entire program into n polynomials $\left\{u_{i}, v_{i}, w_{i}\right\}$ of degree n which encodes which a_{i} gets into which equation with which coefficient so that $\left\{a_{i}\right\}$ is the program execution only if

$$
\underbrace{\left(\sum_{i} a_{i} u_{i}(X)\right.}_{A}) \cdot \underbrace{\left(\sum_{i} a_{i} v_{i}(X)\right.}_{B}=(\underbrace{\left.\sum_{i} a_{i} w_{i}(X)\right)}_{C}+d(X)
$$

Then compute the polynomial on a secret input s and stores (exponentiated) all $g^{u_{i}(s)}$ and $g^{d(s)}$. This is called a proving key P.
Prover runs the program on his own input and computes the internal variables a_{i}. They should satisfy program equations. Then Prover computes g^{A}, g^{B}, g^{C} as a short proof π.

Verifier checks the proof in constant time by computing a few pairings to verify the equation above.

$$
\begin{array}{ll}
\text { For } x=0, x \neq 1,2 & a_{3}=a_{1} \cdot a_{2} \\
\text { For } x=1, x \neq 0,2 & a_{4}=a_{2} \cdot a_{3} \\
\text { For } x=2, x \neq 0,1 & a_{5}=a_{1} \cdot\left(a_{4}+a_{2}\right)
\end{array}
$$

Proper multiplication:

$$
\begin{aligned}
& a_{3}(x-1)(x-2) / 2=((x-1)(x-2) / 2) a_{1} \cdot((x-1)(x-2) / 2) a_{2} \\
& -a_{4} x(x-2) / 2=(x(x-2) / 2) a_{2} \cdot(x(x-2) / 2) a_{3} \\
& x(x-1) a_{5}=x(x-1) a_{1} \cdot\left(x(x-1) a_{4}+x(x-1) a_{2}\right)
\end{aligned}
$$

Altogether

$$
a_{1} a_{2}\left(x^{2}-3 x+2\right)+a_{2} a_{3}\left(x^{2}-2 x\right)+\ldots=0
$$

$\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ are scheme execution if and only if the following polynomials are equal

$$
\left(\sum_{i} a_{i} u_{i}(X)\right) \cdot\left(\sum_{i} a_{i} v_{i}(X)\right)=\left(\sum_{i} a_{i} w_{i}(X)\right)+h(X) t(X)
$$

Testing for correctness reduces to testing of polynomial equivalence How to test the latter?
$\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ are scheme execution if and only if the following polynomials are equal

$$
\left(\sum_{i} a_{i} u_{i}(X)\right) \cdot\left(\sum_{i} a_{i} v_{i}(X)\right)=\left(\sum_{i} a_{i} w_{i}(X)\right)+h(X) t(X)
$$

Testing for correctness reduces to testing of polynomial equivalence
In the proving key a random point s is taken, and $g^{u_{i}(s)}, g^{v_{i}(s)}, g^{w_{i}(s)}$ are computed and published with $z^{\prime}=g^{h(s) t(s)}$
$\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ are scheme execution if and only if the following polynomials are equal

$$
\left(\sum_{i} a_{i} u_{i}(X)\right) \cdot\left(\sum_{i} a_{i} v_{i}(X)\right)=\left(\sum_{i} a_{i} w_{i}(X)\right)+h(X) t(X)
$$

Testing for correctness reduces to testing of polynomial equivalence
In the proving key a random point s is taken, and $g^{u_{i}(s)}, g^{v_{i}(s)}, g^{w_{i}(s)}$ are computed and published with $z^{\prime}=g^{h(s) t(s)}$

The prover can then compute $g^{a_{i} u_{i}(s)}$ by taking $g^{u_{i}(s)}$ to the power of a_{i}. He can compute $x=g^{\sum_{i} a_{i} u_{i}(s)}$, also $y=g^{\sum_{i} a_{i} v_{i}(s)}$ and $z=g^{\sum_{i} a_{i} w_{i}(s)}$.
$\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ are scheme execution if and only if the following polynomials are equal

$$
\left(\sum_{i} a_{i} u_{i}(X)\right) \cdot\left(\sum_{i} a_{i} v_{i}(X)\right)=\left(\sum_{i} a_{i} w_{i}(X)\right)+h(X) t(X)
$$

Testing for correctness reduces to testing of polynomial equivalence
In the proving key a random point s is taken, and $g^{u_{i}(s)}, g^{v_{i}(s)}, g^{w_{i}(s)}$ are computed and published with $z^{\prime}=g^{h(s) t(s)}$

The prover can then compute $g^{a_{i} u_{i}(s)}$ by taking $g^{u_{i}(s)}$ to the power of a_{i}. He can compute $x=g^{\sum_{i} a_{i} u_{i}(s)}$, also $y=g^{\sum_{i} a_{i} v_{i}(s)}$ and $z=g^{\sum_{i} a_{i} w_{i}(s)}$.

Now verifier can check if $e(x, y)=z \cdot z^{\prime}$
$\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ are scheme execution if and only if the following polynomials are equal

$$
\left(\sum_{i} a_{i} u_{i}(X)\right) \cdot\left(\sum_{i} a_{i} v_{i}(X)\right)=\left(\sum_{i} a_{i} w_{i}(X)\right)+h(X) t(X)
$$

Testing for correctness reduces to testing of polynomial equivalence
In the proving key a random point s is taken, and $g^{u_{i}(s)}, g^{v_{i}(s)}, g^{w_{i}(s)}$ are computed and published with $z^{\prime}=g^{h(s) t(s)}$

The prover can then compute $g^{a_{i} u_{i}(s)}$ by taking $g^{u_{i}(s)}$ to the power of a_{i}. He can compute $x=g^{\sum_{i} a_{i} u_{i}(s)}$, also $y=g^{\sum_{i} a_{i} v_{i}(s)}$ and $z=g^{\sum_{i} a_{i} w_{i}(s)}$.

Now verifier can check if $e(x, y)=z \cdot z^{\prime}$
Wait, what if he cheats and just computes Z to be as needed?

To prove that

$$
\left(\sum_{i} a_{i} u_{i}(X)\right) \cdot\left(\sum_{i} a_{i} v_{i}(X)\right)=\left(\sum_{i} a_{i} w_{i}(X)\right)+h(X) t(X)
$$

Proving key also contains for random $\alpha, \beta, \gamma, \delta$

$$
g^{\alpha}, g^{\beta}, g^{\gamma}, g^{\delta}, g^{\frac{\beta u_{i}(s)+\alpha v_{i}(s)+w_{i}(s)}{\delta}}, z^{\prime}=g^{\frac{h(s) t(s)}{\delta}}
$$

Prover computes

$$
A=g^{\alpha+\left(\sum_{i} a_{i} u_{i}(s)\right)}, B=g^{\beta+\left(\sum_{i} a_{i} v_{i}(s)\right)}, C=g^{\sum_{i} a_{i} \frac{\beta u_{i}(s)+\alpha v_{i}(s)+w_{i}(s)}{\delta}}
$$

Verifier checks if

$$
e(A, B)=e\left(g^{\alpha}, g^{\beta}\right) \cdot e\left(C z^{\prime}, g^{\delta}\right)
$$

Only 2 uncacheable pairing computations! Any incorrect a_{i} will make C inconsistent with A, B, and the inconsistency is impossible to correct if you do not know α, β, δ, s

Some more complexity:

- Prover randomizes his outputs so extra variables r, x are introduced and another pairing operation is performed by Verifier.
- Pairing is of type-III, so three different G groups and three generators.
- Input variables are treated differently, and another pairing is needed.
- $g^{s^{j}}$ for all j are published instead of $g^{u_{i}(s)}, g^{v_{i}(s)}$ in order to make proving key smaller. This makes Prover to do extra work to recompute the polynomial values using FFT.

