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MOTIVATION
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Verifiable Computation
Sometimes we need to delegate computation to remote agents whom we do 

not fully trust: 

Database is searched or updated on a remote server; 

Secure hardware signs the input.

Privacy-preserving AI training;

Blind auctions, blockchain, etc.. 

We might need to pay the agents for the work if it is done correctly. 
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Summary
Alice needs program C to be computed on input X; 

Bob takes the task (C,X);

Bob returns answer A and proof of correctness P;

Alice verifies P spending much less time than Bob. 

Alice rewards Bob. 

How to do that so that Bob can not cheat? 
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Summary
Alice needs program C to be computed on input X; 

Bob takes the task (C,X);

Bob returns answer A and proof of correctness P;

Alice verifies P spending much less time than Bob. 

Alice rewards Bob. 

How to do that so that Bob can not cheat? 

A mistake in just one step can ruin the entire computation. 
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zk-STARK
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Simple Example
Program: 

Take input 𝑋! = 𝑋; 

Compute 𝑋" ← (𝑋"#$% + 3) up to 𝑖 = 100.
Return 𝐴 = 𝑋$!!. 
No big number arithmetic, only lowest 10 digits (modulo 1010). 
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Simple Example
Program: 

Take input 𝑋! = 𝑋; 

Compute 𝑋" ← (𝑋"#$% + 3) up to 𝑖 = 100.
Return 𝐴 = 𝑋$!!. 
No big number arithmetic, only lowest 10 digits (modulo 1010). 

Alice says X = 1. 
Bob returns A = 5251434499 and some proof P (just a few bytes). 

How can that be? 
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Protocol
Program: 

Take input 𝑋! = 𝑋; 

Compute 𝑋" ← (𝑋"#$% + 3) up to 𝑖 = 100.
Return 𝐴 = 𝑋$!!. 
No big number arithmetic, only lowest 10 digits (modulo 1010).

Very simple protocol: 
Bob computes some function f on 10000 inputs, from 1 to 10000. 
Bob computes another function g on the same 10000 inputs. 
Alice selects random 0 < s < 10000. 
Bob returns f(s),f(s +1),g(s). 
Alice verifies just one equation and any cheat is detected with probability 99%. 

10



Protocol
Program: 

Take input 𝑋! = 𝑋; 

Compute 𝑋" ← (𝑋"#$% + 3) up to 𝑖 = 100.
Return 𝐴 = 𝑋$!!. 
No big number arithmetic, only lowest 10 digits (modulo 1010).

Very simple protocol: 
Bob computes some function f on 10000 inputs, from 1 to 10000. 
Bob computes another function g on the same 10000 inputs. 
Alice selects random 0 < s < 10000. 
Bob returns f(s),f(s +1),g(s). 
Alice verifies just one equation and any cheat is detected with probability 99%.

How exactly?
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Details
Let Bob’s program be a table of 101 entries
§ Compute polynomial f of degree 100 that 

interpolates on the memory
Code Value f
𝑋! 1 f(0)
𝑋$ 4 f(1)
𝑋% 19 f(2)
𝑋& 364 f(3)
…
𝑋$!! 5251434499 f(100)
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Details
Let Bob’s program be a table of 101 entries
§ Compute polynomial f of degree 100 that 

interpolates on the memory
§ Define constraint

𝐶(𝑥 , 𝑦 ) = 𝑦 − 𝑥% − 3.
§ Bob executed the program if 

𝐶(𝑓(𝑥), 𝑓(𝑥 + 1)) = 0 for all x
§ Note that 𝐶(𝑓(𝑥), 𝑓(𝑥 + 1)) has degree 200, and
𝐷(𝑥) = 𝑥(𝑥 − 1)(𝑥 − 2) · (𝑥 − 99) divides it. 

§ Define
𝑔(𝑥 ) = 𝐶 (𝑓(𝑥 ), 𝑓(𝑥 + 1))/𝐷 (𝑥 )

Code Value f
𝑋! 1 f(0)
𝑋$ 4 f(1)
𝑋% 19 f(2)
𝑋& 364 f(3)
…
𝑋$!! 5251434499 f(100)
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Details

𝐶(𝑥 , 𝑦 ) = 𝑦 − 𝑥% − 3.

𝐷 𝑥 = 𝑥 𝑥 − 1 𝑥 − 2 · 𝑥 − 99

𝑔(𝑥 ) = 𝐶 (𝑓(𝑥 ), 𝑓(𝑥 + 1))/𝐷 (𝑥 )

Code Value f
𝑋! 1 f(0)
𝑋$ 4 f(1)
𝑋% 19 f(2)
𝑋& 364 f(3)
…
𝑋$!! 5251434499 f(100)
… … …

? f(10000)
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Details

𝐶(𝑥 , 𝑦 ) = 𝑦 − 𝑥% − 3.

𝐷 𝑥 = 𝑥 𝑥 − 1 𝑥 − 2 · 𝑥 − 99

𝑔(𝑥 ) = 𝐶 (𝑓(𝑥 ), 𝑓(𝑥 + 1))/𝐷 (𝑥 )

Bob goes on

§ Compute f and g up to 10000 

Code Value f
𝑋! 1 f(0)
𝑋$ 4 f(1)
𝑋% 19 f(2)
𝑋& 364 f(3)
…
𝑋$!! 5251434499 f(100)
… … …

? f(10000)
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Details
𝐶(𝑥 , 𝑦 ) = 𝑦 − 𝑥% − 3.

𝐷 𝑥 = 𝑥 𝑥 − 1 𝑥 − 2 · 𝑥 − 99

𝑔(𝑥 ) = 𝐶 (𝑓(𝑥 ), 𝑓(𝑥 + 1))/𝐷 (𝑥 )

Bob goes on

§ Compute f and g up to 10000 

§ Commit to the evaluations: 
𝐻$ = 𝐻(𝑓(0), 𝑓(1), … , 𝑓(10000));
𝐻% = 𝐻(𝑔(0), 𝑔(1), … , 𝑔(10000));

§ Send 𝐻$, 𝐻% to Alice with proofs that 𝑓, 𝑔 of degree 
100. 

§ Alice sends random 𝑠 between 0 and 10000 to Bob. 
§ Bob sends back 𝑓(𝑠), 𝑓(𝑠 + 1), 𝑔(𝑠). 

Code Value f
𝑋! 1 f(0)
𝑋$ 4 f(1)
𝑋% 19 f(2)
𝑋& 364 f(3)
…
𝑋$!! 5251434499 f(100)
… … …

? f(10000)
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Details
Recall

𝐶(𝑥 , 𝑦 ) = 𝑦 − 𝑥% − 3.

𝐷 𝑥 = 𝑥 𝑥 − 1 𝑥 − 2 · 𝑥 − 99

𝑔(𝑥 ) = 𝐶 (𝑓(𝑥 ), 𝑓(𝑥 + 1))/𝐷 (𝑥 )

Alice verifies
𝐶 (𝑓(𝑠), 𝑓(𝑠 + 1))/𝐷(𝑠) = 𝑔(𝑠 ).

It works if Bob is honest by definition. 
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Cheat
What if Bob cheats and does not know the true 𝑓? 

§ He cannot compute proper 𝑔 = 𝐶(𝑓, 𝑓)/𝐷 of 

degree 100

§ 𝐶(𝑓’, 𝑓’)/𝐷 will differ from 𝑔 on at least 1 point
§ As polynomials they can agree on at most 100 points 

(they have degree 100) out of 10000. 
§ Thus for random 𝑠 Alice detects the cheat with 

probability 99% 

Code Value f
𝑋! 1 f(0)
𝑋$ 4 f(1)
𝑋% 20 f’(2) ≠ f(2)
𝑋& 365 f’(3)
…
𝑋$!! 5251434499 f(100)
… … …

? f(10000)
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Cheat
What if Bob cheats and does not know the true 𝑓? 

§ He cannot compute proper 𝑔 = 𝐶(𝑓, 𝑓)/𝐷 of 

degree 100

§ 𝐶(𝑓’, 𝑓’)/𝐷 will differ from 𝑔 on at least 1 point
§ As polynomials they can agree on at most 100 points 

(they have degree 100) out of 10000. 
§ Thus for random 𝑠 Alice detects the cheat with 

probability 99% 

Code Value f
𝑋! 1 f(0)
𝑋$ 4 f(1)
𝑋% 20 f’(2) ≠ f(2)
𝑋& 365 f’(3)
…
𝑋$!! 5251434499 f(100)
… … …

? f(10000)
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Extensions
Zero knowledge: Bob can convince Alice revealing only 𝑋" , 𝑖 > 100.
Complex programs
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Arbitrary Programs
Let 𝐶 be a code of 𝑇 steps. I can prove that

I executed the code on (secret) input 𝐾 and got result 𝑋. 

Let 𝐶' be the code of my CPU (handling registers, function calls, memory, etc.). 
Prepare 𝑇 CPU-state variables, 𝐒 = (𝑆$, 𝑆%, . . . , 𝑆( ). 
Using 𝑇 copies of 𝐶_𝑃, prove correct transitions. 
Let 𝐖 = (𝑊$,𝑊%, … ,𝑊() be the list of states 𝑆 sorted by the memory address they 
access. 

Ø Prove that successive memory accesses yield the same data. 
Ø Prove that 𝐖 is a sort of 𝐒 using permutation networks/proof of shuffle, etc. 
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zk-SNARK
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Pairings

Group 𝐺 with generator 𝑔, for example a set of integers modulo a prime p

Pairing e is a function of two arguments such that 

𝑒(𝑔! , 𝑔") = 𝑒 𝑔, 𝑔 !"

and 𝑒(𝑔, 𝑔) is also a generator 
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Factorization Proof
Suppose you want to prove you know 𝑝 and 𝑞

𝑁 = 𝑝 · 𝑞. 
Then you provide 𝑝′ = 𝑔#, 𝑞′ = 𝑔$ and everyone can verify that 

𝑒(𝑝′, 𝑞′) = 𝑒 𝑔, 𝑔 %

since 
𝑒(𝑝′, 𝑞′) = 𝑒(𝑔#, 𝑔$)
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Sophisticated Programs
𝑎$, 𝑎% – inputs, 𝑎) – output. 

𝑎& ← 𝑎$ · 𝑎%;
𝑎* ← 𝑎% · 𝑎&;
𝑎+ ← 𝑎$ · (𝑎* + 𝑎%);

··· 

Quite many real programs can be represented this way. 
Suppose I have a correct program execution: (𝑎$, 𝑎%, 𝑎&, . . . ). How to prove it is correct? 

Ø Selecting a random equation? Then it will be easy to cheat in the others

Ø Supply all 𝑎" as 𝑔,! ? Too expensive. 
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Sophisticated Programs
Program with 𝑛 lines

𝑎& ← 𝑎$ · 𝑎%;
𝑎* ← 𝑎% · 𝑎&;
𝑎+ ← 𝑎$ · (𝑎* + 𝑎%);

··· 

Instead, try the following concept:

Trusted party squeezes the entire program into 𝑛 polynomials {𝑢" , 𝑣" , 𝑤"} of degree 𝑛
which encodes which 𝑎" gets into which equation with which coefficient so that {𝑎"}
is the program execution only if 

5
"

𝑎"𝑢" 𝑋 8 5
"

𝑎"𝑣" 𝑋 = 5
"

𝑎"𝑤" 𝑋 + 𝑑(𝑋)

A B C 26



Sophisticated Programs
Trusted party squeezes the entire program into 𝑛 polynomials {𝑢" , 𝑣" , 𝑤"} of degree 𝑛
which encodes which 𝑎" gets into which equation with which coefficient so that {𝑎"} is 
the program execution only if 

Then compute the polynomial on a secret input 𝑠 and stores (exponentiated) all 𝑔-!(/)
and  𝑔1(/). This is called a proving key 𝑃. 
Prover runs the program on his own input and computes the internal variables 𝑎". 
They should satisfy program equations. Then Prover computes 𝑔2, 𝑔3 , 𝑔4 as a short 
proof 𝜋. 
Verifier checks the proof in constant time by computing a few pairings to verify the 
equation above. 

5
"

𝑎"𝑢" 𝑋 8 5
"

𝑎"𝑣" 𝑋 = 5
"

𝑎"𝑤" 𝑋 + 𝑑(𝑋)

A B C
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Form Single Equation From Many
For 𝑥 = 0, 𝑥 ≠ 1,2 𝑎& = 𝑎$ V 𝑎%
For 𝑥 = 1, 𝑥 ≠ 0,2 𝑎* = 𝑎% V 𝑎&
For 𝑥 = 2, 𝑥 ≠ 0,1 𝑎+ = 𝑎$ V (𝑎* + 𝑎%)

Proper multiplication:
𝑎& 𝑥 − 1 𝑥 − 2 /2 = 𝑥 − 1 𝑥 − 2 /2 𝑎$ V 𝑥 − 1 𝑥 − 2 /2 𝑎%
−𝑎*𝑥 𝑥 − 2 /2 = 𝑥 𝑥 − 2 /2 𝑎% V 𝑥 𝑥 − 2 /2 𝑎&
𝑥 𝑥 − 1 𝑎+ = 𝑥 𝑥 − 1 𝑎$ V 𝑥 𝑥 − 1 𝑎* + 𝑥 𝑥 − 1 𝑎%

Altogether
𝑎$𝑎% 𝑥% − 3𝑥 + 2 + 𝑎%𝑎& 𝑥% − 2𝑥 + … = 0
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Polynomial Relation for the Entire Scheme
(𝑎$, 𝑎%, … , 𝑎)) are scheme execution if and only if the following polynomials are equal

Testing for correctness reduces to testing of polynomial equivalence

How to test the latter?

5
"

𝑎"𝑢" 𝑋 8 5
"

𝑎"𝑣" 𝑋 = 5
"

𝑎"𝑤" 𝑋 + ℎ 𝑋 𝑡(𝑋)
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Polynomial Relation for the Entire Scheme
(𝑎$, 𝑎%, … , 𝑎)) are scheme execution if and only if the following polynomials are equal

Testing for correctness reduces to testing of polynomial equivalence

In the proving key a random point 𝑠 is taken, and 𝑔-!(/), 𝑔5!(/), 𝑔6!(/)are computed and 
published with 𝑧′ = 𝑔7 / 8(/)

5
"

𝑎"𝑢" 𝑋 8 5
"

𝑎"𝑣" 𝑋 = 5
"

𝑎"𝑤" 𝑋 + ℎ 𝑋 𝑡(𝑋)
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Polynomial Relation for the Entire Scheme
(𝑎$, 𝑎%, … , 𝑎)) are scheme execution if and only if the following polynomials are equal

Testing for correctness reduces to testing of polynomial equivalence

In the proving key a random point 𝑠 is taken, and 𝑔-!(/), 𝑔5!(/), 𝑔6!(/)are computed and 
published with 𝑧′ = 𝑔7 / 8(/)

The prover can then compute 𝑔,!-!(/) by taking 𝑔-!(/) to the power of 𝑎". He can 
compute 𝑥 = 𝑔∑! ,!-!(/), also 𝑦 = 𝑔∑! ,!5!(/) and 𝑧 = 𝑔∑! ,!6!(/). 

5
"

𝑎"𝑢" 𝑋 8 5
"

𝑎"𝑣" 𝑋 = 5
"

𝑎"𝑤" 𝑋 + ℎ 𝑋 𝑡(𝑋)
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Polynomial Relation for the Entire Scheme
(𝑎$, 𝑎%, … , 𝑎)) are scheme execution if and only if the following polynomials are equal

Testing for correctness reduces to testing of polynomial equivalence

In the proving key a random point 𝑠 is taken, and 𝑔-!(/), 𝑔5!(/), 𝑔6!(/)are computed and 
published with 𝑧′ = 𝑔7 / 8(/)

The prover can then compute 𝑔,!-!(/) by taking 𝑔-!(/) to the power of 𝑎". He can 
compute 𝑥 = 𝑔∑! ,!-!(/), also 𝑦 = 𝑔∑! ,!5!(/) and 𝑧 = 𝑔∑! ,!6!(/). 

Now verifier can check if 𝑒(𝑥, 𝑦) = 𝑧 V 𝑧’

5
"

𝑎"𝑢" 𝑋 8 5
"

𝑎"𝑣" 𝑋 = 5
"

𝑎"𝑤" 𝑋 + ℎ 𝑋 𝑡(𝑋)
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Polynomial Relation for the Entire Scheme
(𝑎$, 𝑎%, … , 𝑎)) are scheme execution if and only if the following polynomials are equal

Testing for correctness reduces to testing of polynomial equivalence

In the proving key a random point 𝑠 is taken, and 𝑔-!(/), 𝑔5!(/), 𝑔6!(/)are computed and 
published with 𝑧′ = 𝑔7 / 8(/)

The prover can then compute 𝑔,!-!(/) by taking 𝑔-!(/) to the power of 𝑎". He can 
compute 𝑥 = 𝑔∑! ,!-!(/), also 𝑦 = 𝑔∑! ,!5!(/) and 𝑧 = 𝑔∑! ,!6!(/). 

Now verifier can check if 𝑒(𝑥, 𝑦) = 𝑧 V 𝑧’

5
"

𝑎"𝑢" 𝑋 8 5
"

𝑎"𝑣" 𝑋 = 5
"

𝑎"𝑤" 𝑋 + ℎ 𝑋 𝑡(𝑋)

Wait, what if he cheats and just 
computes 𝑧 to be as needed? 
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Missing Details
To prove that

Proving key also contains for random 𝛼, 𝛽, 𝛾, 𝛿

𝑔: , 𝑔; , 𝑔< , 𝑔= , 𝑔
;-! / >:5! / >6! /

= , 𝑧? = 𝑔
7 / 8 /

=

Prover computes

𝐴 = 𝑔:> ∑! ,!-!(/) , 𝐵 = 𝑔;> ∑! ,!5!(/) , 𝐶 = 𝑔∑! ,!
;-! / >:5! / >6! /

=

Verifier checks if 
𝑒 𝐴, 𝐵 = 𝑒 𝑔: , 𝑔; V 𝑒(𝐶𝑧?, 𝑔=)

Only 2 uncacheable pairing computations! Any incorrect 𝑎" will make 𝐶 inconsistent 
with 𝐴, 𝐵, and the inconsistency is impossible to correct if you do not know 𝛼, 𝛽, 𝛿, 𝑠

@
!

𝑎!𝑢! 𝑋 D @
!

𝑎!𝑣! 𝑋 = @
!

𝑎!𝑤! 𝑋 + ℎ 𝑋 𝑡(𝑋)
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More Missing Details

Some more complexity: 

• Prover randomizes his outputs so extra variables 𝑟, 𝑥 are introduced and another 
pairing operation is performed by Verifier. 

• Pairing is of type-III, so three different G groups and three generators. 

• Input variables are treated differently, and another pairing is needed. 

• 𝑔/" for all 𝑗 are published instead of 𝑔-!(/), 𝑔5!(/) in order to make proving key 
smaller. This makes Prover to do extra work to recompute the polynomial values 
using FFT. 
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