
CS 5594: BLOCKCHAIN
TECHNOLOGIES

THANG HOANG, PhD

Spring 2023

(ZERO-KNOWLEDGE) VERIFIABLE COMPUTATION

Most slides derived from the one by Dmitry Khovratovich

Overview

Motivation

zk-STARK

zk-SNARK

2

MOTIVATION

3

Verifiable Computation
Sometimes we need to delegate computation to remote agents whom we do

not fully trust:

Database is searched or updated on a remote server;

Secure hardware signs the input.

Privacy-preserving AI training;

Blind auctions, blockchain, etc..

We might need to pay the agents for the work if it is done correctly.

4

Summary
Alice needs program C to be computed on input X;

Bob takes the task (C,X);

Bob returns answer A and proof of correctness P;

Alice verifies P spending much less time than Bob.

Alice rewards Bob.

How to do that so that Bob can not cheat?

5

Summary
Alice needs program C to be computed on input X;

Bob takes the task (C,X);

Bob returns answer A and proof of correctness P;

Alice verifies P spending much less time than Bob.

Alice rewards Bob.

How to do that so that Bob can not cheat?

A mistake in just one step can ruin the entire computation.

6

zk-STARK

7

Simple Example
Program:

Take input 𝑋! = 𝑋;

Compute 𝑋" ← (𝑋"#$% + 3) up to 𝑖 = 100.
Return 𝐴 = 𝑋$!!.
No big number arithmetic, only lowest 10 digits (modulo 1010).

8

Simple Example
Program:

Take input 𝑋! = 𝑋;

Compute 𝑋" ← (𝑋"#$% + 3) up to 𝑖 = 100.
Return 𝐴 = 𝑋$!!.
No big number arithmetic, only lowest 10 digits (modulo 1010).

Alice says X = 1.
Bob returns A = 5251434499 and some proof P (just a few bytes).

How can that be?

9

Protocol
Program:

Take input 𝑋! = 𝑋;

Compute 𝑋" ← (𝑋"#$% + 3) up to 𝑖 = 100.
Return 𝐴 = 𝑋$!!.
No big number arithmetic, only lowest 10 digits (modulo 1010).

Very simple protocol:
Bob computes some function f on 10000 inputs, from 1 to 10000.
Bob computes another function g on the same 10000 inputs.
Alice selects random 0 < s < 10000.
Bob returns f(s),f(s +1),g(s).
Alice verifies just one equation and any cheat is detected with probability 99%.

10

Protocol
Program:

Take input 𝑋! = 𝑋;

Compute 𝑋" ← (𝑋"#$% + 3) up to 𝑖 = 100.
Return 𝐴 = 𝑋$!!.
No big number arithmetic, only lowest 10 digits (modulo 1010).

Very simple protocol:
Bob computes some function f on 10000 inputs, from 1 to 10000.
Bob computes another function g on the same 10000 inputs.
Alice selects random 0 < s < 10000.
Bob returns f(s),f(s +1),g(s).
Alice verifies just one equation and any cheat is detected with probability 99%.

How exactly?

11

Details
Let Bob’s program be a table of 101 entries
§ Compute polynomial f of degree 100 that

interpolates on the memory
Code Value f
𝑋! 1 f(0)
𝑋$ 4 f(1)
𝑋% 19 f(2)
𝑋& 364 f(3)
…
𝑋$!! 5251434499 f(100)

12

Details
Let Bob’s program be a table of 101 entries
§ Compute polynomial f of degree 100 that

interpolates on the memory
§ Define constraint

𝐶(𝑥 , 𝑦) = 𝑦 − 𝑥% − 3.
§ Bob executed the program if

𝐶(𝑓(𝑥), 𝑓(𝑥 + 1)) = 0 for all x
§ Note that 𝐶(𝑓(𝑥), 𝑓(𝑥 + 1)) has degree 200, and
𝐷(𝑥) = 𝑥(𝑥 − 1)(𝑥 − 2) · (𝑥 − 99) divides it.

§ Define
𝑔(𝑥) = 𝐶 (𝑓(𝑥), 𝑓(𝑥 + 1))/𝐷 (𝑥)

Code Value f
𝑋! 1 f(0)
𝑋$ 4 f(1)
𝑋% 19 f(2)
𝑋& 364 f(3)
…
𝑋$!! 5251434499 f(100)

13

Details

𝐶(𝑥 , 𝑦) = 𝑦 − 𝑥% − 3.

𝐷 𝑥 = 𝑥 𝑥 − 1 𝑥 − 2 · 𝑥 − 99

𝑔(𝑥) = 𝐶 (𝑓(𝑥), 𝑓(𝑥 + 1))/𝐷 (𝑥)

Code Value f
𝑋! 1 f(0)
𝑋$ 4 f(1)
𝑋% 19 f(2)
𝑋& 364 f(3)
…
𝑋$!! 5251434499 f(100)
… … …

? f(10000)

14

Details

𝐶(𝑥 , 𝑦) = 𝑦 − 𝑥% − 3.

𝐷 𝑥 = 𝑥 𝑥 − 1 𝑥 − 2 · 𝑥 − 99

𝑔(𝑥) = 𝐶 (𝑓(𝑥), 𝑓(𝑥 + 1))/𝐷 (𝑥)

Bob goes on

§ Compute f and g up to 10000

Code Value f
𝑋! 1 f(0)
𝑋$ 4 f(1)
𝑋% 19 f(2)
𝑋& 364 f(3)
…
𝑋$!! 5251434499 f(100)
… … …

? f(10000)

15

Details
𝐶(𝑥 , 𝑦) = 𝑦 − 𝑥% − 3.

𝐷 𝑥 = 𝑥 𝑥 − 1 𝑥 − 2 · 𝑥 − 99

𝑔(𝑥) = 𝐶 (𝑓(𝑥), 𝑓(𝑥 + 1))/𝐷 (𝑥)

Bob goes on

§ Compute f and g up to 10000

§ Commit to the evaluations:
𝐻$ = 𝐻(𝑓(0), 𝑓(1), … , 𝑓(10000));
𝐻% = 𝐻(𝑔(0), 𝑔(1), … , 𝑔(10000));

§ Send 𝐻$, 𝐻% to Alice with proofs that 𝑓, 𝑔 of degree
100.

§ Alice sends random 𝑠 between 0 and 10000 to Bob.
§ Bob sends back 𝑓(𝑠), 𝑓(𝑠 + 1), 𝑔(𝑠).

Code Value f
𝑋! 1 f(0)
𝑋$ 4 f(1)
𝑋% 19 f(2)
𝑋& 364 f(3)
…
𝑋$!! 5251434499 f(100)
… … …

? f(10000)

16

Details
Recall

𝐶(𝑥 , 𝑦) = 𝑦 − 𝑥% − 3.

𝐷 𝑥 = 𝑥 𝑥 − 1 𝑥 − 2 · 𝑥 − 99

𝑔(𝑥) = 𝐶 (𝑓(𝑥), 𝑓(𝑥 + 1))/𝐷 (𝑥)

Alice verifies
𝐶 (𝑓(𝑠), 𝑓(𝑠 + 1))/𝐷(𝑠) = 𝑔(𝑠).

It works if Bob is honest by definition.

17

Cheat
What if Bob cheats and does not know the true 𝑓?

§ He cannot compute proper 𝑔 = 𝐶(𝑓, 𝑓)/𝐷 of

degree 100

§ 𝐶(𝑓’, 𝑓’)/𝐷 will differ from 𝑔 on at least 1 point
§ As polynomials they can agree on at most 100 points

(they have degree 100) out of 10000.
§ Thus for random 𝑠 Alice detects the cheat with

probability 99%

Code Value f
𝑋! 1 f(0)
𝑋$ 4 f(1)
𝑋% 20 f’(2) ≠ f(2)
𝑋& 365 f’(3)
…
𝑋$!! 5251434499 f(100)
… … …

? f(10000)

18

Cheat
What if Bob cheats and does not know the true 𝑓?

§ He cannot compute proper 𝑔 = 𝐶(𝑓, 𝑓)/𝐷 of

degree 100

§ 𝐶(𝑓’, 𝑓’)/𝐷 will differ from 𝑔 on at least 1 point
§ As polynomials they can agree on at most 100 points

(they have degree 100) out of 10000.
§ Thus for random 𝑠 Alice detects the cheat with

probability 99%

Code Value f
𝑋! 1 f(0)
𝑋$ 4 f(1)
𝑋% 20 f’(2) ≠ f(2)
𝑋& 365 f’(3)
…
𝑋$!! 5251434499 f(100)
… … …

? f(10000)

19

Extensions
Zero knowledge: Bob can convince Alice revealing only 𝑋" , 𝑖 > 100.
Complex programs

20

Arbitrary Programs
Let 𝐶 be a code of 𝑇 steps. I can prove that

I executed the code on (secret) input 𝐾 and got result 𝑋.

Let 𝐶' be the code of my CPU (handling registers, function calls, memory, etc.).
Prepare 𝑇 CPU-state variables, 𝐒 = (𝑆$, 𝑆%, . . . , 𝑆().
Using 𝑇 copies of 𝐶_𝑃, prove correct transitions.
Let 𝐖 = (𝑊$,𝑊%, … ,𝑊() be the list of states 𝑆 sorted by the memory address they
access.

Ø Prove that successive memory accesses yield the same data.
Ø Prove that 𝐖 is a sort of 𝐒 using permutation networks/proof of shuffle, etc.

21

zk-SNARK

22

Pairings

Group 𝐺 with generator 𝑔, for example a set of integers modulo a prime p

Pairing e is a function of two arguments such that

𝑒(𝑔! , 𝑔") = 𝑒 𝑔, 𝑔 !"

and 𝑒(𝑔, 𝑔) is also a generator

23

Factorization Proof
Suppose you want to prove you know 𝑝 and 𝑞

𝑁 = 𝑝 · 𝑞.
Then you provide 𝑝′ = 𝑔#, 𝑞′ = 𝑔$ and everyone can verify that

𝑒(𝑝′, 𝑞′) = 𝑒 𝑔, 𝑔 %

since
𝑒(𝑝′, 𝑞′) = 𝑒(𝑔#, 𝑔$)

24

Sophisticated Programs
𝑎$, 𝑎% – inputs, 𝑎) – output.

𝑎& ← 𝑎$ · 𝑎%;
𝑎* ← 𝑎% · 𝑎&;
𝑎+ ← 𝑎$ · (𝑎* + 𝑎%);

···

Quite many real programs can be represented this way.
Suppose I have a correct program execution: (𝑎$, 𝑎%, 𝑎&, . . .). How to prove it is correct?

Ø Selecting a random equation? Then it will be easy to cheat in the others

Ø Supply all 𝑎" as 𝑔,! ? Too expensive.

25

Sophisticated Programs
Program with 𝑛 lines

𝑎& ← 𝑎$ · 𝑎%;
𝑎* ← 𝑎% · 𝑎&;
𝑎+ ← 𝑎$ · (𝑎* + 𝑎%);

···

Instead, try the following concept:

Trusted party squeezes the entire program into 𝑛 polynomials {𝑢" , 𝑣" , 𝑤"} of degree 𝑛
which encodes which 𝑎" gets into which equation with which coefficient so that {𝑎"}
is the program execution only if

5
"

𝑎"𝑢" 𝑋 8 5
"

𝑎"𝑣" 𝑋 = 5
"

𝑎"𝑤" 𝑋 + 𝑑(𝑋)

A B C 26

Sophisticated Programs
Trusted party squeezes the entire program into 𝑛 polynomials {𝑢" , 𝑣" , 𝑤"} of degree 𝑛
which encodes which 𝑎" gets into which equation with which coefficient so that {𝑎"} is
the program execution only if

Then compute the polynomial on a secret input 𝑠 and stores (exponentiated) all 𝑔-!(/)
and 𝑔1(/). This is called a proving key 𝑃.
Prover runs the program on his own input and computes the internal variables 𝑎".
They should satisfy program equations. Then Prover computes 𝑔2, 𝑔3 , 𝑔4 as a short
proof 𝜋.
Verifier checks the proof in constant time by computing a few pairings to verify the
equation above.

5
"

𝑎"𝑢" 𝑋 8 5
"

𝑎"𝑣" 𝑋 = 5
"

𝑎"𝑤" 𝑋 + 𝑑(𝑋)

A B C

27

Form Single Equation From Many
For 𝑥 = 0, 𝑥 ≠ 1,2 𝑎& = 𝑎$ V 𝑎%
For 𝑥 = 1, 𝑥 ≠ 0,2 𝑎* = 𝑎% V 𝑎&
For 𝑥 = 2, 𝑥 ≠ 0,1 𝑎+ = 𝑎$ V (𝑎* + 𝑎%)

Proper multiplication:
𝑎& 𝑥 − 1 𝑥 − 2 /2 = 𝑥 − 1 𝑥 − 2 /2 𝑎$ V 𝑥 − 1 𝑥 − 2 /2 𝑎%
−𝑎*𝑥 𝑥 − 2 /2 = 𝑥 𝑥 − 2 /2 𝑎% V 𝑥 𝑥 − 2 /2 𝑎&
𝑥 𝑥 − 1 𝑎+ = 𝑥 𝑥 − 1 𝑎$ V 𝑥 𝑥 − 1 𝑎* + 𝑥 𝑥 − 1 𝑎%

Altogether
𝑎$𝑎% 𝑥% − 3𝑥 + 2 + 𝑎%𝑎& 𝑥% − 2𝑥 + … = 0

28

Polynomial Relation for the Entire Scheme
(𝑎$, 𝑎%, … , 𝑎)) are scheme execution if and only if the following polynomials are equal

Testing for correctness reduces to testing of polynomial equivalence

How to test the latter?

5
"

𝑎"𝑢" 𝑋 8 5
"

𝑎"𝑣" 𝑋 = 5
"

𝑎"𝑤" 𝑋 + ℎ 𝑋 𝑡(𝑋)

29

Polynomial Relation for the Entire Scheme
(𝑎$, 𝑎%, … , 𝑎)) are scheme execution if and only if the following polynomials are equal

Testing for correctness reduces to testing of polynomial equivalence

In the proving key a random point 𝑠 is taken, and 𝑔-!(/), 𝑔5!(/), 𝑔6!(/)are computed and
published with 𝑧′ = 𝑔7 / 8(/)

5
"

𝑎"𝑢" 𝑋 8 5
"

𝑎"𝑣" 𝑋 = 5
"

𝑎"𝑤" 𝑋 + ℎ 𝑋 𝑡(𝑋)

30

Polynomial Relation for the Entire Scheme
(𝑎$, 𝑎%, … , 𝑎)) are scheme execution if and only if the following polynomials are equal

Testing for correctness reduces to testing of polynomial equivalence

In the proving key a random point 𝑠 is taken, and 𝑔-!(/), 𝑔5!(/), 𝑔6!(/)are computed and
published with 𝑧′ = 𝑔7 / 8(/)

The prover can then compute 𝑔,!-!(/) by taking 𝑔-!(/) to the power of 𝑎". He can
compute 𝑥 = 𝑔∑! ,!-!(/), also 𝑦 = 𝑔∑! ,!5!(/) and 𝑧 = 𝑔∑! ,!6!(/).

5
"

𝑎"𝑢" 𝑋 8 5
"

𝑎"𝑣" 𝑋 = 5
"

𝑎"𝑤" 𝑋 + ℎ 𝑋 𝑡(𝑋)

31

Polynomial Relation for the Entire Scheme
(𝑎$, 𝑎%, … , 𝑎)) are scheme execution if and only if the following polynomials are equal

Testing for correctness reduces to testing of polynomial equivalence

In the proving key a random point 𝑠 is taken, and 𝑔-!(/), 𝑔5!(/), 𝑔6!(/)are computed and
published with 𝑧′ = 𝑔7 / 8(/)

The prover can then compute 𝑔,!-!(/) by taking 𝑔-!(/) to the power of 𝑎". He can
compute 𝑥 = 𝑔∑! ,!-!(/), also 𝑦 = 𝑔∑! ,!5!(/) and 𝑧 = 𝑔∑! ,!6!(/).

Now verifier can check if 𝑒(𝑥, 𝑦) = 𝑧 V 𝑧’

5
"

𝑎"𝑢" 𝑋 8 5
"

𝑎"𝑣" 𝑋 = 5
"

𝑎"𝑤" 𝑋 + ℎ 𝑋 𝑡(𝑋)

32

Polynomial Relation for the Entire Scheme
(𝑎$, 𝑎%, … , 𝑎)) are scheme execution if and only if the following polynomials are equal

Testing for correctness reduces to testing of polynomial equivalence

In the proving key a random point 𝑠 is taken, and 𝑔-!(/), 𝑔5!(/), 𝑔6!(/)are computed and
published with 𝑧′ = 𝑔7 / 8(/)

The prover can then compute 𝑔,!-!(/) by taking 𝑔-!(/) to the power of 𝑎". He can
compute 𝑥 = 𝑔∑! ,!-!(/), also 𝑦 = 𝑔∑! ,!5!(/) and 𝑧 = 𝑔∑! ,!6!(/).

Now verifier can check if 𝑒(𝑥, 𝑦) = 𝑧 V 𝑧’

5
"

𝑎"𝑢" 𝑋 8 5
"

𝑎"𝑣" 𝑋 = 5
"

𝑎"𝑤" 𝑋 + ℎ 𝑋 𝑡(𝑋)

Wait, what if he cheats and just
computes 𝑧 to be as needed?

33

Missing Details
To prove that

Proving key also contains for random 𝛼, 𝛽, 𝛾, 𝛿

𝑔: , 𝑔; , 𝑔< , 𝑔= , 𝑔
;-! / >:5! / >6! /

= , 𝑧? = 𝑔
7 / 8 /

=

Prover computes

𝐴 = 𝑔:> ∑! ,!-!(/) , 𝐵 = 𝑔;> ∑! ,!5!(/) , 𝐶 = 𝑔∑! ,!
;-! / >:5! / >6! /

=

Verifier checks if
𝑒 𝐴, 𝐵 = 𝑒 𝑔: , 𝑔; V 𝑒(𝐶𝑧?, 𝑔=)

Only 2 uncacheable pairing computations! Any incorrect 𝑎" will make 𝐶 inconsistent
with 𝐴, 𝐵, and the inconsistency is impossible to correct if you do not know 𝛼, 𝛽, 𝛿, 𝑠

@
!

𝑎!𝑢! 𝑋 D @
!

𝑎!𝑣! 𝑋 = @
!

𝑎!𝑤! 𝑋 + ℎ 𝑋 𝑡(𝑋)

34

More Missing Details

Some more complexity:

• Prover randomizes his outputs so extra variables 𝑟, 𝑥 are introduced and another
pairing operation is performed by Verifier.

• Pairing is of type-III, so three different G groups and three generators.

• Input variables are treated differently, and another pairing is needed.

• 𝑔/" for all 𝑗 are published instead of 𝑔-!(/), 𝑔5!(/) in order to make proving key
smaller. This makes Prover to do extra work to recompute the polynomial values
using FFT.

35

