CS 5594: BLOCKCHAIN TECHNOLOGIES Spring 2023 THANG HOANG, PhD (ZERO-KNOWLEDGE) VERIFIABLE COMPUTATION ## Overview Motivation zk-STARK zk-SNARK ## **MOTIVATION** ## Verifiable Computation Sometimes we need to delegate computation to remote agents whom we do not fully trust: Database is searched or updated on a remote server; Secure hardware signs the input. Privacy-preserving AI training; Blind auctions, **blockchain**, etc.. We might need to pay the agents for the work if it is done correctly. ## Summary Alice needs program C to be computed on input X; Bob takes the task (C,X); Bob returns answer A and proof of correctness P; Alice verifies P spending much less time than Bob. Alice rewards Bob. How to do that so that Bob can not cheat? ## Summary Alice needs program C to be computed on input X; Bob takes the task (C,X); Bob returns answer A and proof of correctness P; Alice verifies P spending much less time than Bob. Alice rewards Bob. How to do that so that Bob can not cheat? A mistake in just one step can ruin the entire computation. ## zk-STARK ## Simple Example #### **Program:** Take input $X_0 = X$; Compute $X_i \leftarrow (X_{i-1}^2 + 3)$ up to i = 100. Return $A = X_{100}$. No big number arithmetic, only lowest 10 digits (modulo 10^{10}). ## Simple Example #### **Program:** Take input $X_0 = X$; Compute $X_i \leftarrow (X_{i-1}^2 + 3)$ up to i = 100. Return $A = X_{100}$. No big number arithmetic, only lowest 10 digits (modulo 10^{10}). Alice says X = 1. Bob returns A = 5251434499 and some proof P (just a few bytes). How can that be? ## Protocol #### **Program:** Take input $X_0 = X$; Compute $X_i \leftarrow (X_{i-1}^2 + 3)$ up to i = 100. Return $A = X_{100}$. No big number arithmetic, only lowest 10 digits (modulo 10^{10}). #### Very simple protocol: Bob computes some function f on 10000 inputs, from 1 to 10000. Bob computes another function g on the same 10000 inputs. Alice selects random 0 < s < 10000. Bob returns f(s), f(s + 1), g(s). Alice verifies just one equation and any cheat is detected with probability 99%. ## Protocol #### **Program:** Take input $X_0 = X$; Compute $X_i \leftarrow (X_{i-1}^2 + 3)$ up to i = 100. Return $A = X_{100}$. No big number arithmetic, only lowest 10 digits (modulo 10^{10}). #### Very simple protocol: Bob computes some function f on 10000 inputs, from 1 to 10000. Bob computes another function g on the same 10000 inputs. How exactly? Alice selects random 0 < s < 10000. Bob returns f(s), f(s + 1), g(s). Alice verifies just one equation and any cheat is detected with probability 99%. | Compute polynomial f of degree 100 that | |---| | interpolates on the memory | | Code | Value | f | |-----------|------------|--------------| | X_0 | 1 | <i>f</i> (0) | | X_1 | 4 | <i>f</i> (1) | | X_2 | 19 | <i>f</i> (2) | | X_3 | 364 | <i>f</i> (3) | | ••• | | | | X_{100} | 5251434499 | f(100) | Let Bob's program be a table of 101 entries Code Value f Comparts a slam arrived for the state are a 100 the | | | | - 601 | |---------|---|--------------|-------| | X_{0} | 1 | <i>f</i> (0) | inte | $$X_1$$ 4 $f(1)$ $$X_2$$ 19 $f(2)$ $$X_3$$ 364 $f(3)$ • • • $$X_{100}$$ 5251434499 $f(100)$ Compute polynomial f of degree 100 that interpolates on the memory Define constraint $$C(x,y) = y - x^2 - 3.$$ Bob executed the program if $$C(f(x), f(x+1)) = 0$$ for all x - Note that C(f(x), f(x+1)) has degree 200, and $D(x) = x(x-1)(x-2) \cdot (x-99)$ divides it. - Define $$g(x) = C(f(x), f(x + 1))/D(x)$$ | Code | Value | f | $C(x,y) = y - x^2 - 3.$ | |-----------|------------|----------------|---| | X_0 | 1 | <i>f</i> (0) | $D(x) = x(x - 1)(x - 2) \cdot (x - 99)$ | | X_1 | 4 | <i>f</i> (1) | g(x) = C(f(x), f(x + 1))/D(x) | | X_2 | 19 | <i>f</i> (2) | | | X_3 | 364 | <i>f</i> (3) | | | ••• | | | | | X_{100} | 5251434499 | <i>f</i> (100) | | | ••• | ••• | ••• | | | | ? | f(10000) | | | Code | Value | f | |-------------------------|------------|----------------| | X_0 | 1 | <i>f</i> (0) | | X_1 | 4 | <i>f</i> (1) | | X_2 | 19 | <i>f</i> (2) | | X_3 | 364 | <i>f</i> (3) | | ••• | | | | <i>X</i> ₁₀₀ | 5251434499 | <i>f</i> (100) | | ••• | ••• | ••• | | | ? | f(10000) | | | | | $$C(x,y) = y - x^2 - 3.$$ $$D(x) = x(x - 1)(x - 2) \cdot (x - 99)$$ $$g(x) = C(f(x), f(x + 1))/D(x)$$ Bob goes on Compute f and g up to 10000 $$C(x,y) = y - x^2 - 3.$$ $$D(x) = x(x - 1)(x - 2) \cdot (x - 99)$$ $$g(x) = C(f(x), f(x + 1))/D(x)$$ Bob goes on - Compute f and g up to 10000 - Commit to the evaluations: $$H_1 = H(f(0), f(1), ..., f(10000));$$ $H_2 = H(g(0), g(1), ..., g(10000));$ - Send H_1 , H_2 to Alice with proofs that f, g of degree 100. - Alice sends random s between 0 and 10000 to Bob. - Bob sends back f(s), f(s + 1), g(s). 1 $$f(0)$$ 4 $$f(1)$$ $$X_2$$ 19 $f(2)$ $$X_3$$ 364 $f(3)$ ••• X_0 X_1 $$X_{100}$$ 5251434499 $f(100)$ ••• ? f(10000) Recall $$C(x,y) = y - x^2 - 3.$$ $$D(x) = x(x - 1)(x - 2) \cdot (x - 99)$$ $$g(x) = C(f(x), f(x + 1))/D(x)$$ Alice verifies $$C(f(s), f(s + 1))/D(s) = g(s).$$ It works if Bob is honest by definition. ## Cheat What if Bob cheats and does not know the true f? | Code | Value | f | |-----------|------------|-------------------| | X_0 | 1 | <i>f</i> (0) | | X_1 | 4 | <i>f</i> (1) | | X_2 | 20 | $f'(2) \neq f(2)$ | | X_3 | 365 | <i>f</i> ′(3) | | ••• | | | | X_{100} | 5251434499 | <i>f</i> (100) | | ••• | ••• | ••• | f(10000) - He cannot compute proper g = C(f, f)/D of degree 100 - C(f', f')/D will differ from g on at least 1 point - As polynomials they can agree on <u>at most 100 points</u> (they have degree 100) out of 10000. - Thus for random s Alice detects the cheat with probability 99% ## Cheat What if Bob cheats and does not know the true f? | Code | Value | f | |-----------|------------|------------------| | X_0 | 1 | <i>f</i> (0) | | X_1 | 4 | <i>f</i> (1) | | X_2 | 20 | $f'(2)\neq f(2)$ | | X_3 | 365 | <i>f</i> ′(3) | | ••• | | | | X_{100} | 5251434499 | <i>f</i> (100) | f(10000) - He cannot compute proper g = C(f, f)/D of degree 100 - C(f', f')/D will differ from g on at least 1 point - As polynomials they can agree on <u>at most 100 points</u> (they have degree 100) out of 10000. - Thus for random s Alice detects the cheat with probability 99% ## Extensions Zero knowledge: Bob can convince Alice revealing only X_i , i > 100. Complex programs ## **Arbitrary Programs** Let C be a code of T steps. I can prove that I executed the code on (secret) input K and got result X. Let C_P be the code of my CPU (handling registers, function calls, memory, etc.). Prepare T CPU-state variables, $\mathbf{S} = (S_1, S_2, \dots, S_T)$. Using T copies of C_P , prove correct transitions. Let $\mathbf{W} = (W_1, W_2, ..., W_T)$ be the list of states S sorted by the memory address they access. - > Prove that successive memory accesses yield the same data. - \triangleright Prove that **W** is a sort of **S** using permutation networks/proof of shuffle, etc. ## **zk-SNARK** ## Pairings Group G with generator g, for example a set of integers modulo a prime p Pairing e is a function of two arguments such that $$e(g^a, g^b) = e(g, g)^{ab}$$ and e(g,g) is also a generator ## **Factorization Proof** Suppose you want to prove you know p and q $$N = p \cdot q$$. Then you provide $p'=g^p$, $q'=g^q$ and everyone can verify that $$e(p',q') = e(g,g)^N$$ since $$e(p',q') = e(g^p,g^q)$$ ## Sophisticated Programs a_1 , a_2 – inputs, a_n – output. $$a_{3} \leftarrow a_{1} \cdot a_{2};$$ $a_{4} \leftarrow a_{2} \cdot a_{3};$ $a_{5} \leftarrow a_{1} \cdot (a_{4} + a_{2});$ Quite many real programs can be represented this way. Suppose I have a correct program execution: (a_1, a_2, a_3, \dots) . How to prove it is correct? - > Selecting a random equation? Then it will be easy to cheat in the others - \triangleright Supply all a^i as g^{a_i} ? Too expensive. ## Sophisticated Programs #### Program with n lines $$a_{3} \leftarrow a_{1} \cdot a_{2};$$ $a_{4} \leftarrow a_{2} \cdot a_{3};$ $a_{5} \leftarrow a_{1} \cdot (a_{4} + a_{2});$ Instead, try the following concept: Trusted party squeezes the entire program into n polynomials $\{u_i, v_i, w_i\}$ of degree n which encodes which a_i gets into which equation with which coefficient so that $\{a_i\}$ is the program execution only if $$\underbrace{\left(\sum_{i} a_{i} u_{i}(X)\right) \cdot \left(\sum_{i} a_{i} v_{i}(X)\right)}_{A} = \underbrace{\left(\sum_{i} a_{i} w_{i}(X)\right) + d(X)}_{C}$$ # Sophisticated Programs Trusted party squeezes the entire program into n polynomials $\{u_i, v_i, w_i\}$ of degree n which encodes which a_i gets into which equation with which coefficient so that $\{a_i\}$ is the program execution only if $$\left(\sum_{i} a_{i} u_{i}(X)\right) \cdot \left(\sum_{i} a_{i} v_{i}(X)\right) = \left(\sum_{i} a_{i} w_{i}(X)\right) + d(X)$$ Then compute the polynomial on a secret input s and stores (exponentiated) all $g^{u_i(s)}$ and $g^{d(s)}$. This is called a proving key P. Prover runs the program on his own input and computes the internal variables a_i . They should satisfy program equations. Then Prover computes g^A , g^B , g^C as a short proof π . Verifier checks the proof in constant time by computing a few pairings to verify the equation above. # Form Single Equation From Many For $$x = 0, x \neq 1,2$$ $a_3 = a_1 \cdot a_2$ For $x = 1, x \neq 0,2$ $a_4 = a_2 \cdot a_3$ For $x = 2, x \neq 0,1$ $a_5 = a_1 \cdot (a_4 + a_2)$ #### Proper multiplication: $$a_3(x-1)(x-2)/2 = ((x-1)(x-2)/2)a_1 \cdot ((x-1)(x-2)/2)a_2$$ $$-a_4x(x-2)/2 = (x(x-2)/2)a_2 \cdot (x(x-2)/2)a_3$$ $$x(x-1)a_5 = x(x-1)a_1 \cdot (x(x-1)a_4 + x(x-1)a_2)$$ Altogether $$a_1 a_2 (x^2 - 3x + 2) + a_2 a_3 (x^2 - 2x) + \dots = 0$$ $(a_1, a_2, ..., a_n)$ are scheme execution if and only if the following polynomials are equal $$\left(\sum_{i} a_{i} u_{i}(X)\right) \cdot \left(\sum_{i} a_{i} v_{i}(X)\right) = \left(\sum_{i} a_{i} w_{i}(X)\right) + h(X)t(X)$$ Testing for correctness reduces to testing of polynomial equivalence How to test the latter? $(a_1, a_2, ..., a_n)$ are scheme execution if and only if the following polynomials are equal $$\left(\sum_{i} a_{i} u_{i}(X)\right) \cdot \left(\sum_{i} a_{i} v_{i}(X)\right) = \left(\sum_{i} a_{i} w_{i}(X)\right) + h(X)t(X)$$ Testing for correctness reduces to testing of polynomial equivalence In the proving key a random point s is taken, and $g^{u_i(s)}$, $g^{v_i(s)}$, $g^{w_i(s)}$ are computed and published with $z' = g^{h(s)t(s)}$ $(a_1, a_2, ..., a_n)$ are scheme execution if and only if the following polynomials are equal $$\left(\sum_{i} a_{i} u_{i}(X)\right) \cdot \left(\sum_{i} a_{i} v_{i}(X)\right) = \left(\sum_{i} a_{i} w_{i}(X)\right) + h(X)t(X)$$ Testing for correctness reduces to testing of polynomial equivalence In the proving key a random point s is taken, and $g^{u_i(s)}$, $g^{v_i(s)}$, $g^{w_i(s)}$ are computed and published with $z'=g^{h(s)t(s)}$ The prover can then compute $g^{a_iu_i(s)}$ by taking $g^{u_i(s)}$ to the power of a_i . He can compute $x=g^{\sum_i a_iu_i(s)}$, also $y=g^{\sum_i a_iv_i(s)}$ and $z=g^{\sum_i a_iw_i(s)}$. $(a_1, a_2, ..., a_n)$ are scheme execution if and only if the following polynomials are equal $$\left(\sum_{i} a_{i} u_{i}(X)\right) \cdot \left(\sum_{i} a_{i} v_{i}(X)\right) = \left(\sum_{i} a_{i} w_{i}(X)\right) + h(X)t(X)$$ Testing for correctness reduces to testing of polynomial equivalence In the proving key a random point s is taken, and $g^{u_i(s)}$, $g^{v_i(s)}$, $g^{w_i(s)}$ are computed and published with $z'=g^{h(s)t(s)}$ The prover can then compute $g^{a_iu_i(s)}$ by taking $g^{u_i(s)}$ to the power of a_i . He can compute $x=g^{\sum_i a_iu_i(s)}$, also $y=g^{\sum_i a_iv_i(s)}$ and $z=g^{\sum_i a_iw_i(s)}$. Now verifier can check if $e(x, y) = z \cdot z'$ $(a_1, a_2, ..., a_n)$ are scheme execution if and only if the following polynomials are equal $$\left(\sum_{i} a_{i} u_{i}(X)\right) \cdot \left(\sum_{i} a_{i} v_{i}(X)\right) = \left(\sum_{i} a_{i} w_{i}(X)\right) + h(X)t(X)$$ Testing for correctness reduces to testing of polynomial equivalence In the proving key a random point s is taken, and $g^{u_i(s)}$, $g^{v_i(s)}$, $g^{w_i(s)}$ are computed and published with $z'=g^{h(s)t(s)}$ The prover can then compute $g^{a_iu_i(s)}$ by taking $g^{u_i(s)}$ to the power of a_i . He can compute $x=g^{\sum_i a_iu_i(s)}$, also $y=g^{\sum_i a_iv_i(s)}$ and $z=g^{\sum_i a_iw_i(s)}$. Now verifier can check if $e(x, y) = z \cdot z'$ Wait, what if he cheats and just computes z to be as needed? ## Missing Details To prove that $$\left(\sum_{i} a_{i} u_{i}(X)\right) \cdot \left(\sum_{i} a_{i} v_{i}(X)\right) = \left(\sum_{i} a_{i} w_{i}(X)\right) + h(X)t(X)$$ Proving key also contains for random α , β , γ , δ $$g^{\alpha}, g^{\beta}, g^{\gamma}, g^{\delta}, g^{\frac{\beta u_i(s) + \alpha v_i(s) + w_i(s)}{\delta}}, z' = g^{\frac{h(s)t(s)}{\delta}}$$ Prover computes $$A = g^{\alpha + \left(\sum_{i} a_{i} u_{i}(s)\right)}, B = g^{\beta + \left(\sum_{i} a_{i} v_{i}(s)\right)}, C = g^{\sum_{i} a_{i}} \frac{\beta u_{i}(s) + \alpha v_{i}(s) + w_{i}(s)}{\delta}$$ Verifier checks if $$e(A,B) = e(g^{\alpha}, g^{\beta}) \cdot e(Cz', g^{\delta})$$ Only 2 uncacheable pairing computations! Any incorrect a_i will make C inconsistent with A, B, and the inconsistency is impossible to correct if you do not know α, β, δ, s ## More Missing Details #### Some more complexity: - Prover randomizes his outputs so extra variables r, x are introduced and another pairing operation is performed by Verifier. - Pairing is of type-III, so three different G groups and three generators. - Input variables are treated differently, and another pairing is needed. - g^{s^j} for all j are published instead of $g^{u_i(s)}$, $g^{v_i(s)}$ in order to make proving key smaller. This makes Prover to do extra work to recompute the polynomial values using FFT.